

Very high cell density perfusion of CHO cells in disposable bioreactor, challenge or reality

Véronique Chotteau Cell Technology group (CETEG) KTH, School of Biotechnology, Div. Bioprocess

Perfusion in industry for animal cell

- Majority of fed-batch processes world-wise
- Perfusion used 'traditionally'
 - for unstable proteins
 - in companies or lab's with 'culture' perfusion, i.e. where knowledge, competence and PEOPLE are present

Perfusion

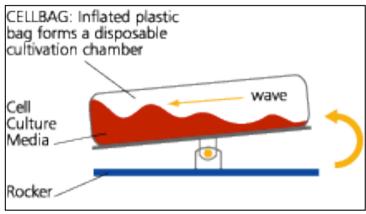
- more technically challenging → higher risk of failure, higher risk of contamination
- smaller cultivation vessel
- less process development
- constant cellular environment is beneficial for cell metabolism and product quality
- Perfusion equipment robust and disposable
 - robust equipment → higher risk of failure
 - disposable equipment → higher risk of contamination

Three systems studied at CETEG (KTH)

Collaborations

WAVE Bioreactor™ equipped with ATF
 GE Healthcare (Sweden, USA)

WAVE Bioreactor™ equipped with TFF GE Healthcare (Sweden, USA)


• CellTank™ CerCell (Denmark), Belach (Sweden)

WAVE Bioreactor™ in perfusion with ATF or TFF

Goal

- Evaluation of disposable WAVE Bioreactor™ in perfusion mode
- Evaluation of two types of cell separation based on hollow fiber filtration:
 - Alternating Tangential Flow filtration
 - Tangential flow filtration
- Evaluation of the limits of the system

WAVE Bioreactor™

source: http://www.gelifesciences.com

Strategy

- Cell line #1 = IgG producing Chinese Hamster Ovary cells
- Study of perfusion → learning phase and study of the equipment
- Study of perfusion → study of the limits of the system
- Evaluation for application of IgG production and comparison with fed-batch
- Evaluation for application of cryopreservation / cell banking

CellTank™ in perfusion mode

Goal

- Evaluation of disposable CellTank™ in perfusion mode (CerCell, Denmark)
- Evaluation of the system

Strategy

- Cell line #2 = IgG producing Chinese Hamster
 Ovary cells
- Study of perfusion → trouble shooting / learning phase and study of the equipment
- Study of perfusion →
 - Evaluation of the system at very high cell density
 - Evaluation of effect of temperature decrease

Introduction and System set-up

Perfusion devices connected to WAVE Bioreactor™

ATF (REFINE Technology)

Alternating

Tangential

Flow

with

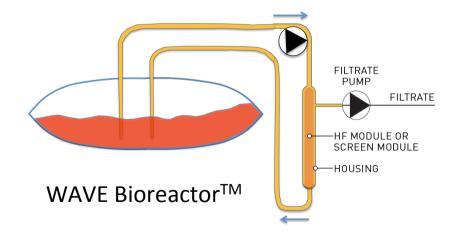
ReadyToProcess™ filter

GE Healthcare

TFF

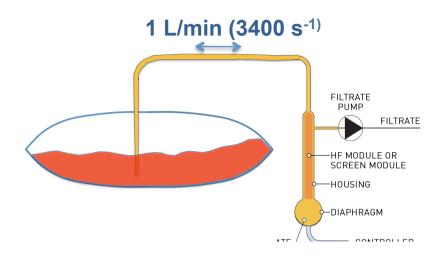
Tangential

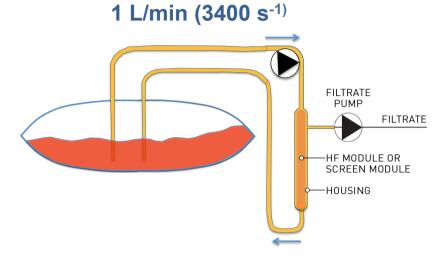
Flow

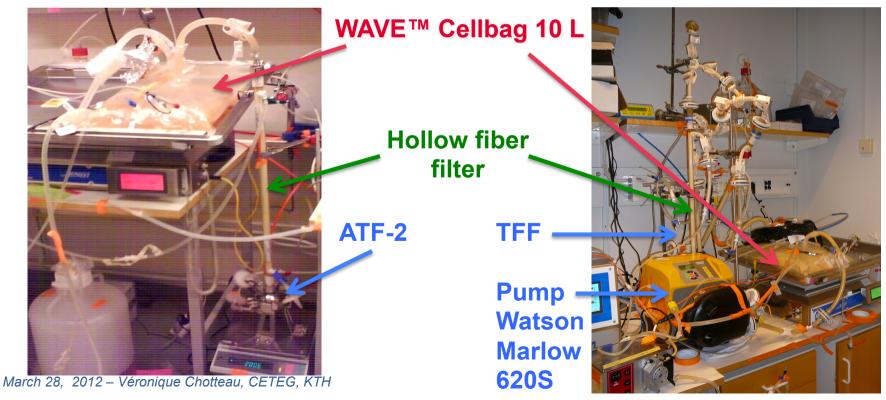

Filtration

with

ReadyToProcess™ filter


GE Healthcare





ATF & WAVE Bioreactor™

TFF & WAVE Bioreactor™

CellTank (CerCell)

CellTank (CerCell)

photo

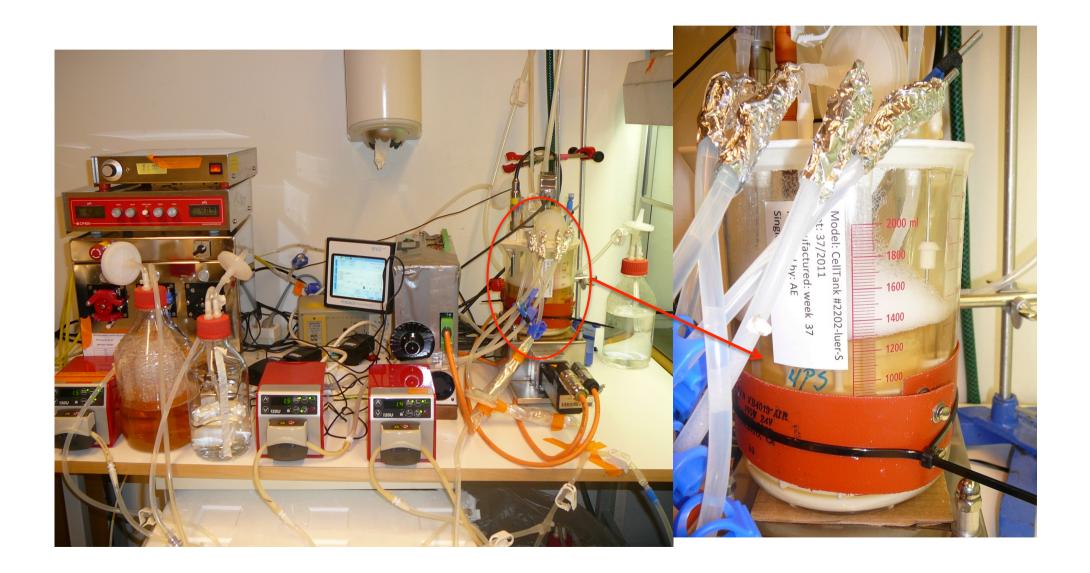
Probe

Medium level in reservoir

Circulating cell-free medium

Red arrows = fluid circulation

Matrix where cells are cultivated entrapped


Rotating centrifugal pump

Source http://cercell.com/

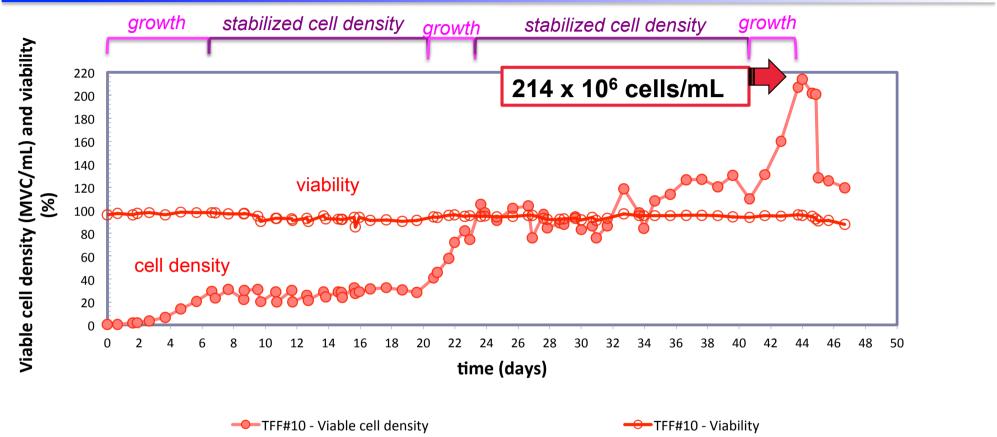
CellTank 2202 system at CETEG

Experimental set-up TTF and ATF runs with Wave BioreactorTM

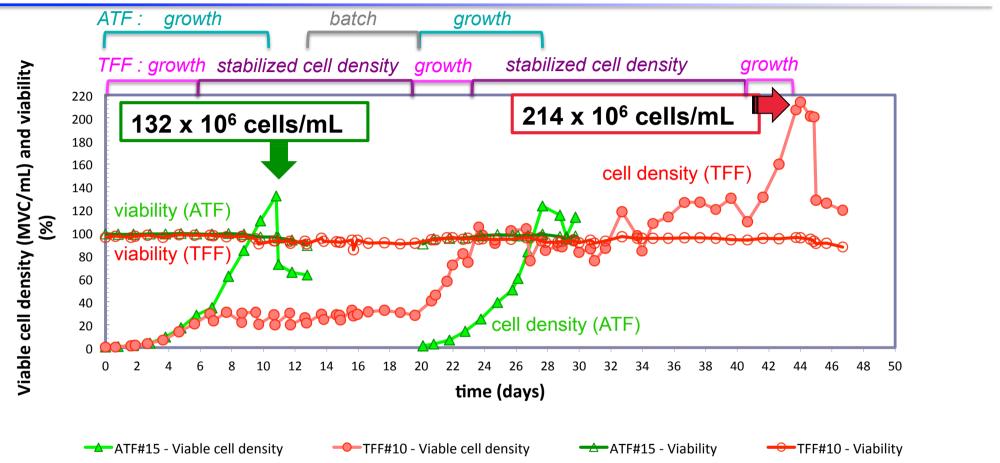
Cell line	mAb producing DHFR ⁻ CHO #1			
Bioreactor	10 L WAVE Cellbag™ with two dip tubes (GE Healthcare)			
Working volume	4 L			
Call congration device	ATF-2 (Refine Technology) & ReadyToProcess™ filter			
Cell separation device	TFF ReadyToProcess™ filter via Watson Marlow 620S pump			
Hollow fiber filters (HF)	ReadyToProcess™ filter polysulfone RTPCFP-2-E-4X2MS (GE Healthcare)			
	pore size 0.2 μm lumen 1 mm filter area 850 cm ²			
Recirculation flow rate*	(0.7 or) 1 L/min → shear rate 3400 s ⁻¹			
Cell density specific perfusion rate	0.05 Reactor Volume/(day x 10 ⁵ cells/mL)			
рН	7 control by adding 0.5 M Na ₂ CO ₃ or pulsing CO ₂ into headspace			
Temperature	37°C			
DO	35 % control by varying the agitation, O ₂ addition into headspace (20-100%)			
A citation water / we alsign a goals	ATF 20-26 rpm / 6-7°			
Agitation rate / rocking angle	TFF 20-27 rpm / 6-8°			
Cultivation medium	animal-component free IS CHO CD XP medium with hydrolysate (Irvine Scientific)			
	+ 3 % of IS-CHO Feed-CD XP (Irvine Scientific)			
Supplementations of glucose and	according to cell consumption			
glutamine				
Addition of Antifoam C (SAFC)	up to 50 ppm concentration (boost addition or by continuous pumping)			
Analyses by Nova Bioprofile FLEX cell density, viability, cell diameter, pH, pCO2, osmolality, concentration				
	glutamine, lactate and ammonia			
Analysis of mAb concentration	protein A HPLC			

^{*} or pressure rising flow (ATF) and exhaust flow (ATF)

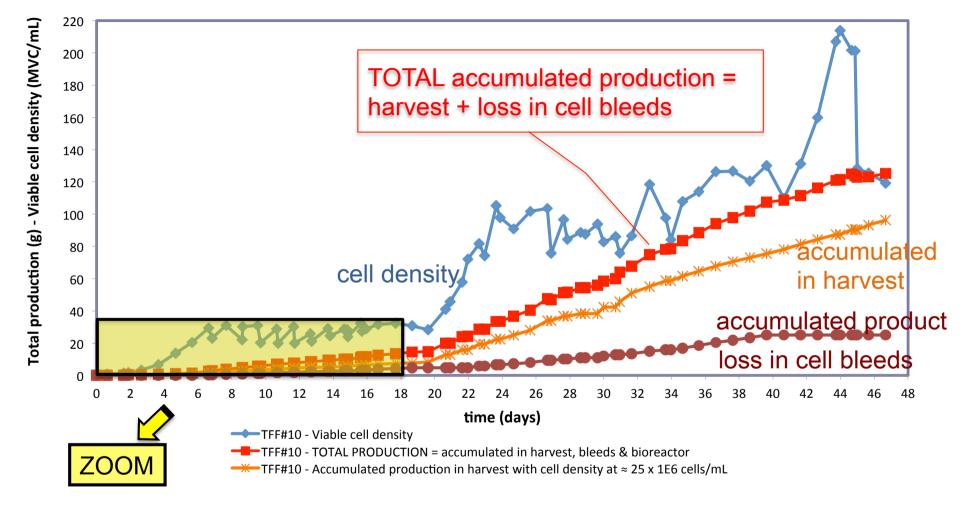
Experimental set-up CellTankTM


Cell line	mAb producing DHFR ⁻ CHO (DP12)
Bioreactor and	CellTank ^{IM} (CerCell) with
cell separation device	matrix (~12 grams non-woven polyester matrix) @ ~ 3.6 m² matrix surface
Working volume	150 mL
Recirculation flow rate*	1 & 1.6 L/min
Cell density specific perfusion rate	≥ 0.05 nL/cell/day (or 1 Reactor Volume/day for 20 x 10 ⁶ /mL)
рН	7 & 7.1 control by adding 0.5 M Na ₂ CO ₃ or pulsing CO ₂ into headspace
Temperature	37°C & 29 to 32°C
DO	40 & 45 % control by O₂ sparging
Cultivation medium	animal-component free IS CHO CD XP medium with hydrolysate (Irvine Scientific)
	+ 3 % of IS-CHO Feed-CD XP (Irvine Scientific)
Supplementations of glucose and	according to cell consumption
glutamine	
Addition of Antifoam C (SAFC)	
Analyses by Nova Bioprofile FLEX	cell density, viability, cell diameter, pH, pCO2, osmolality, concentrations of glucose,
	glutamine, lactate and ammonia
Analysis of mAb concentration	protein A HPLC

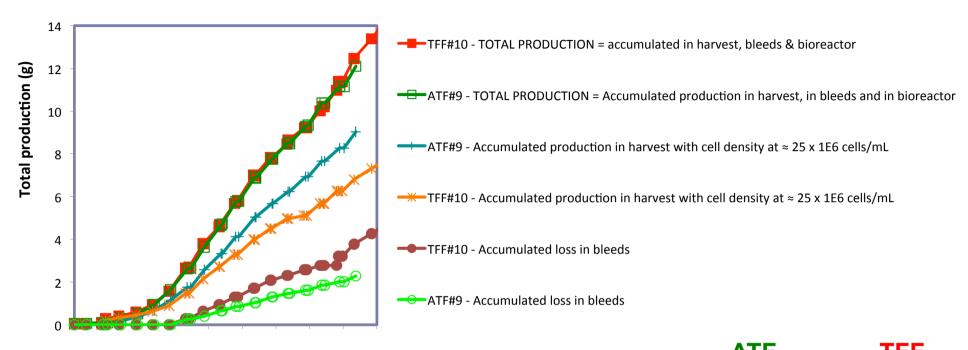
$\label{eq:Results} \textbf{Results}$ $\textbf{Perfusion using ATF or TFF in Wave Bioreactor}^{\text{TM}}$


Continuation of run using TFF at very high cell density

- Cell density stabilized at 100 x 10⁶ and 120 x 10⁶ cells/mL by daily cell bleeds during > 2 weeks
- Cell densities ≥ 200 x 10⁶ cells/mL (2 days) → Max cell density = 214 x 10⁶ cells/mL
- Cell density limit due to limitations of membrane capacity for the encountered high viscosity (pressure = 1 bar), oxygenation and CO₂ level (31 kPa)

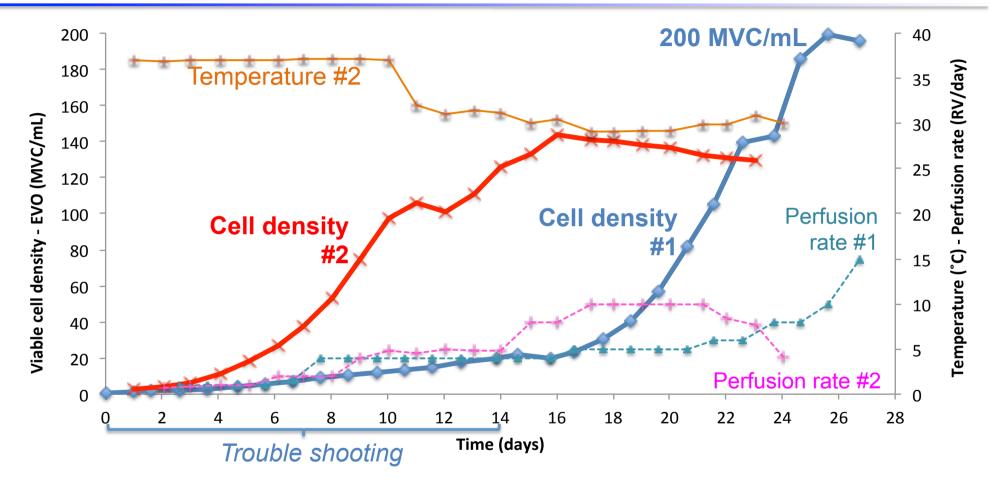

Perfusion using ATF or TFF at very high cell densities

- Max cell density = 132 x 10⁶ cells/mL using ATF
- After maximum reached → cell density maintained at ≈ 100 x 10⁶ cells/mL using ATF
- Cell density limit due to pressure limitation to push highly viscous fluid using nonpressurisable disposable bioreactor

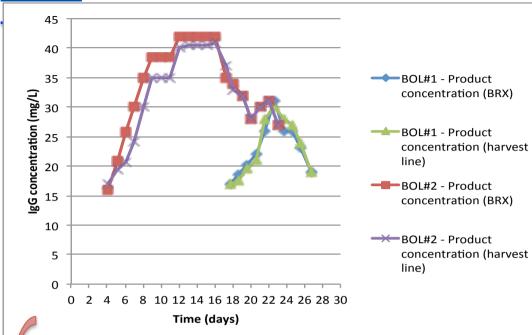

Total accumulated antibody production in the harvest, the cell bleed, the bioreactor and cell density using TFF

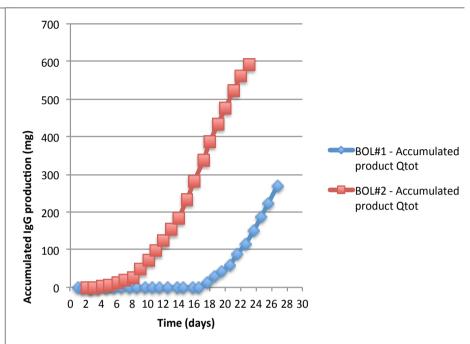
- Observation of partial IgG retention by the hollow fiber filter
- Calculation exercise in this study run
 - 17 days at ≈ 20-30 x 10^6 cells/mL \rightarrow ≈ 7 g

Total accumulated antibody production in the harvest, the cell bleed, the bioreactor and cell density using TFF or ATF after 17 days at ≈ 25 x 10⁶ cells/mL

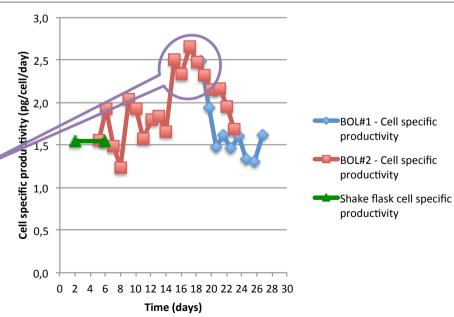

		AIF	IFF
•	Partial retention of IgG by hollow fiber filter	yes	yes
•	Cell specific productivity (pg/cell/day)	10-15	10-15
•	Total accumulated production	12	12
•	Accumulated production in harvest (g)	9	7
•	Total removal of mAb in cell bleeds/total production (w/w in %)	19	30
•	Yield (production in harvest/total production) (w/w in %)	75	55
•	Residual mAb mass in bioreactor/total production (w/w in %)	6	15

$\label{eq:Results} \textbf{Perfusion using CellTank}^{TM}$


Cell density and perfusion rate in CellTank runs (BOL#1, BOL#2)

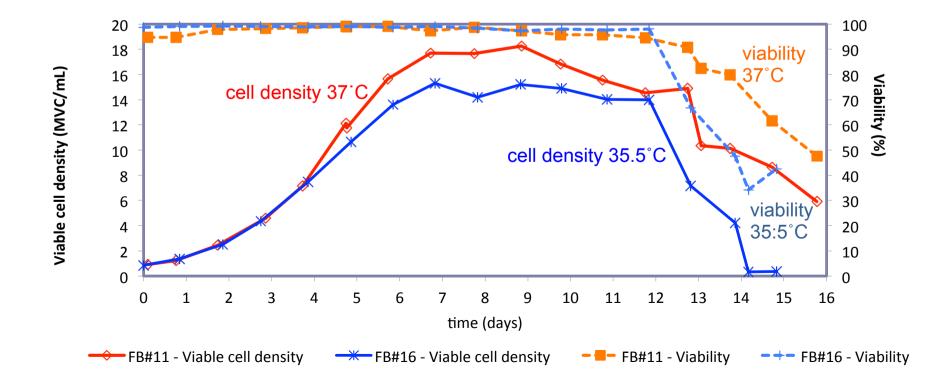


BOL#1: Fast growth after day 14 (after trouble shooting (1st run)) → up to 200 x 10s/mL
BOL#2: Cell density kept ≈ 130 x 10s/mL at perfusion rate of 8-10 RV/day for over 10 days
Temperature lowered from 37°C to 32°C/31°C/30°C/29°C on day 16 → cell growth arrest


IgG production in CellTank™ runs

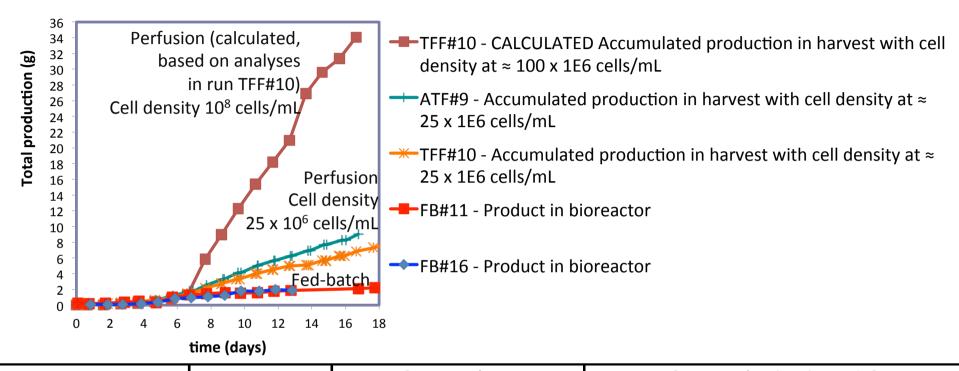
Product accumulated with time and increasing cell density (after day 14 for BOL#1)

- Cell specific productivity in perfusion mode comparable to shake flask productivity except at 30°C where it was ≈ 40 % higher
- No retention of IgG in the polymer matrix.



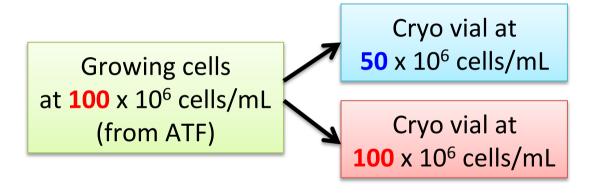
Results Fed-batch versus perfusion using ATF or TFF

Comparison with fed-batch process


Experimental set-up

- Initial → final volume = 2 L → 4 L
- Same set-points of DO, pH
- Temperature → 37°C (run FB#11) and 35.5°C from day 7 (run FB#16)
- Base medium = IS CHO CD XP medium with hydrolysate (Irvine Scientific)
- Feed medium = base medium + feed concentrate Efficient Feed A & B (InVitrogen)

Production in perfusion or fed-batch 4 L WAVE BioreactorTM


	Fed-batch	Perfusion (ATF or TFF) with cell density at ≈ 25 x 10 ⁶ cells/mL	Perfusion (calculated from analyses in run TFF#10) with cell density at ≈ 100 x 10 ⁶ cells/mL
Ab production after 17 days run	≈ 2 g	≈ 7 to 9 g	≈ 34 g (Rm: ≈ 22 g/week produced at 10 ⁸ cells/mL)

Results Cryopreservation from very high cell density perfusion

Cryopreservation study: set-ups

Freezing conditions

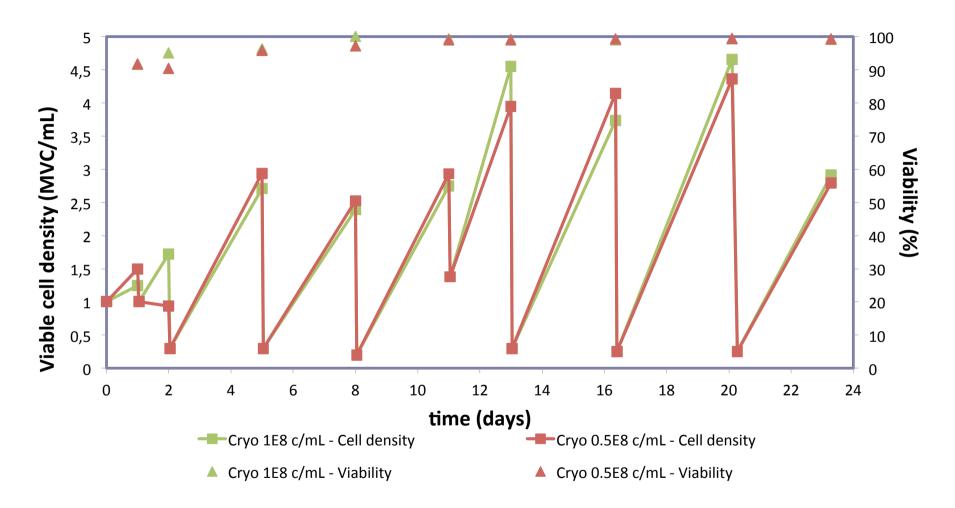
45 % cell broth

45 % fresh medium

10 % DMSO

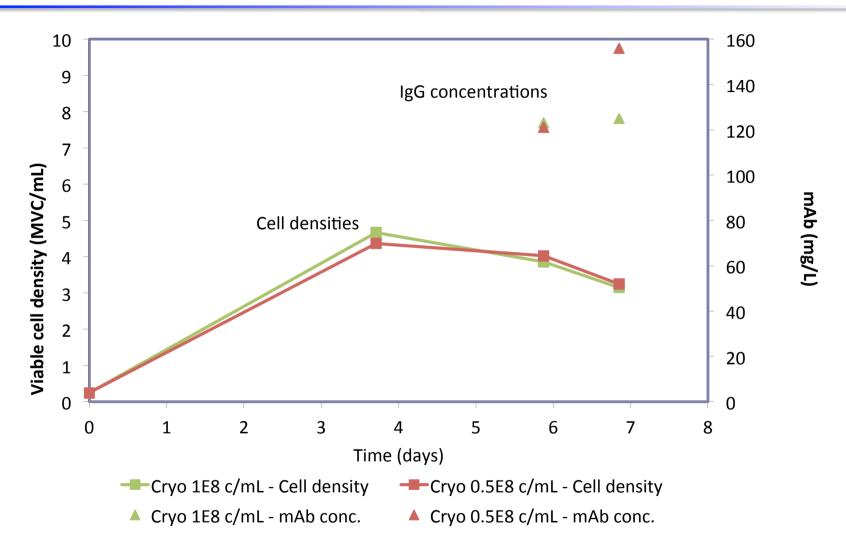
90 % cell broth

10 % DMSO


After cryopreservation (N2 tank)

- → Cell thaw in shake flasks at 10⁶ cells/mL
- → Study of cell revival and mAb production

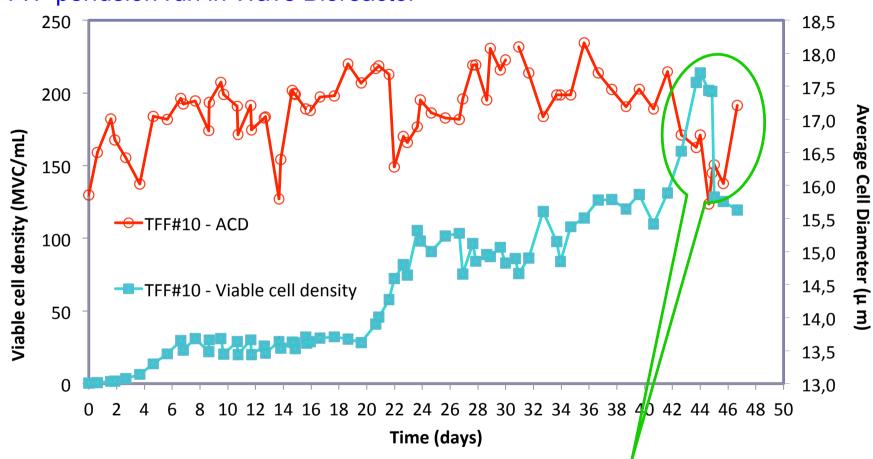
Rm: freezing single experiment


Cell thaw after cryopreservation from high cell density culture

Cryopreservation from 100 x 10⁶ cells/mL in vials of 100 or 50 x 10⁶ cells/mL
 → excellent cell resuscitation

Cryopreservation: Production test in shake flasks 2 weeks after thaw

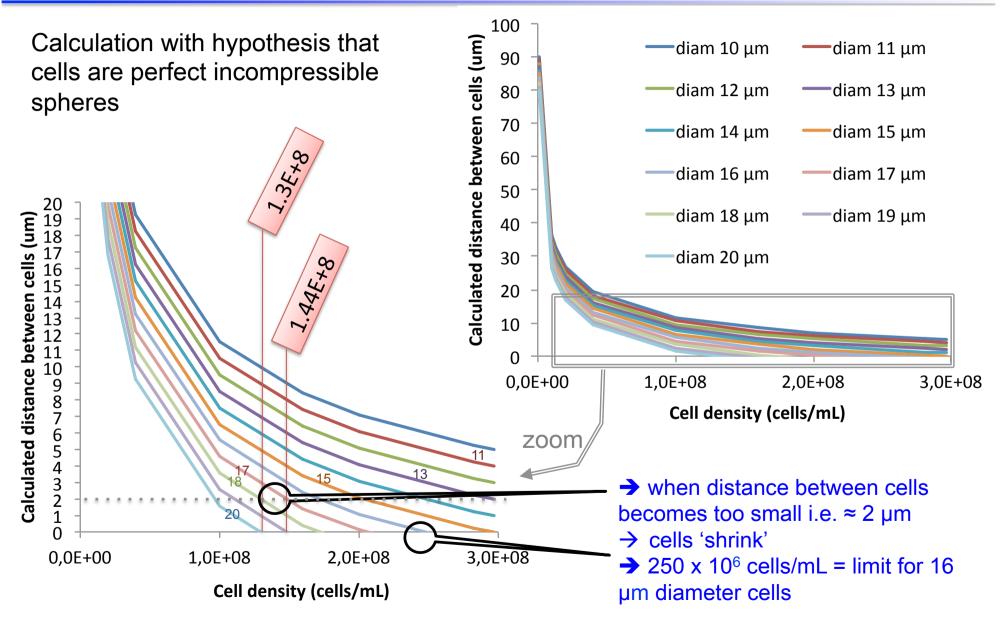
Normal mAb production 2 weeks after thaw



Cells at very high cell density

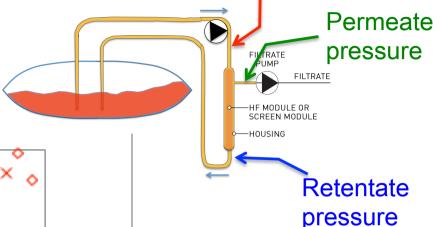
Cell diameter at very high cell density

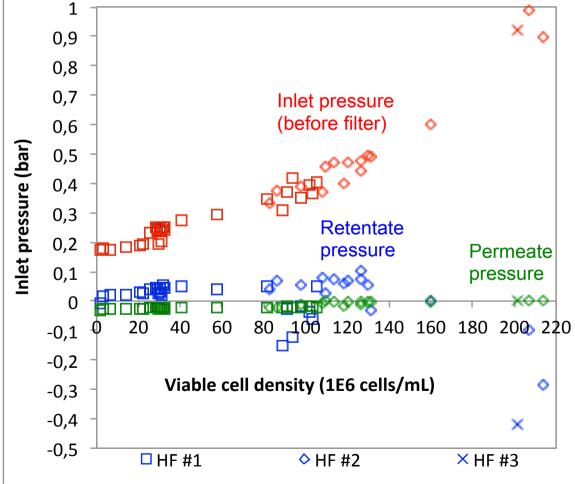
1. TTF perfusion run in Wave BioreactorTM



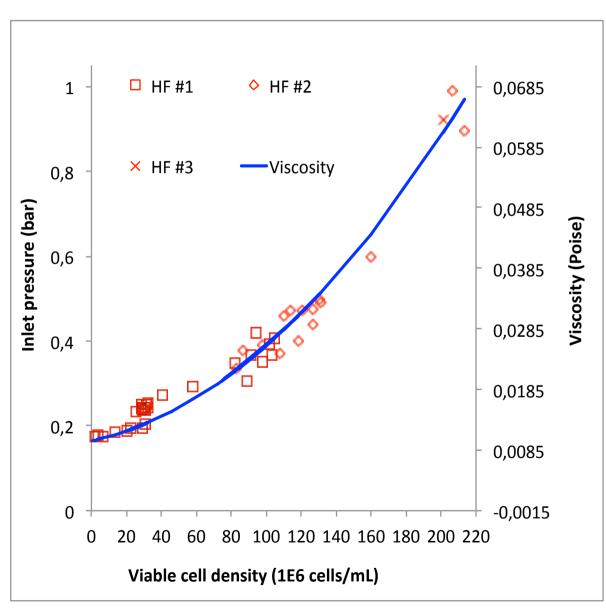
Smaller cell diameter when cell density > 131 x 10⁶ cells/mL

2. Perfusion run in CellTankTM \rightarrow cell diameter smaller when cell density \geq **144** x **10**⁶ cells/mL (Fogale cell density probe - multi-frequency signal)


Distance between cells for different cell diameters



Pressures during TTF perfusion


Inlet pressure (before filter)

Viscosity very well correlated with cell density

Viscosity = $0.01 (1 + 2.5 \Phi + 14.1 \Phi^2)$

 Φ = volume fraction of cells in the mixture

Calculation for cell diameter 17 µm of viscosity of slurry according to Thomas D. G. 1965 J. Colloid Science 20:267

- → Increased viscosity due to increased cell density
- Increased pressure due to increased viscosity in a constricted filter section
- Calculation of filter fiber numbers (or filter section) can be done given target cell density, allowed inlet pressure

Conclusions

Conclusions – Cell density

- Very high cell density of 100 x 10⁶ cells/mL stably maintained in growing phase and at high viability by cell bleeds in a perfused WAVE Bioreactor™ using TFF or ATF cell separations
- Very high cell density of 200 x 10⁶ cells/mL achieved in CellTank™
- Very high cell density of 130 x 10⁶ cells/mL during 11 days with lower temperature in CellTank
- With present settings → maximal cell density = 214 x 10⁶ cells/mL with TFF
 → maximal cell density = 132 x 10⁶ cells/mL with ATF
- TFF → cell density limited by membrane capacity (for the encountered high viscosity), oxygenation and CO₂ level
- ATF → cell density limited by insufficient pressure to push highly viscous fluid when using nonpressurisable disposable bioreactor
- → TFF and CellTank™ allow reaching higher cell densities than ATF with present settings
- First time, CHO cell density 200 x 10⁶ cells/mL in a wave-agitated bioreactor
- First time, CHO cell density 200 x 10⁶ cells/mL in CellTank

Conclusions – Cell density limit?

- Upper limit of cell density for suspension
 - depends of cell diameter
 - calculated theoretically for perfect spheres
 - for CHO cells (diameter 16 μm) → 250 x 10⁶ cells/mL
 - smaller limit than tissue cells or adherent cells in absence of contact inhibition.
- Applicable limit of cell density for suspension
 - depends of cell diameter
 - depends of equipment
 - impact of cell shrinking?
 - perhaps recommended to avoid shrinking
 - limit of 130 x 10⁶ cells/mL for CHO cells
 - theoretical smallest distance between cells with unchanged diameter = 2 μm

Conclusions – mAb production

- No retention of mAb in CellTank™ matrix using cell line #2
- Retention using cell line #1 in hollow fibre filter: Higher retentions of mAb by hollow fibre filter using TFF than ATF using
- In perfusion, major effect of this retention = loss of mAb in the cell bleeds
- → CellTank™ the most favourable for production according to this study
- → ATF more favourable for production at stable cell density maintained by cell bleeds
- Potential production per bioreactor volume by perfusion much larger than fed-batch

Conclusions – Operation

- Recommended to apply cell specific perfusion rate
- No cell sample today in CellTank™ (under development)
- Short residence time ≈ 20-30 sec for TFF and ATF
- Short 'residence time' ≈ 6-9 sec for CellTank™
- Shear rate of 3400 s⁻¹ well tolerated for TFF and ATF
- TFF ReadyToProcess disposable, easy to put in place and easy to put a new hollow fiber filter during cultivation → easier operation than ATF (autoclavable)
- Operation using CellTank™ easy and handy with robust integrated perfusion device
- Operation during 24 and 27 days could have been continued longer
- Absence of sparging in Wave Bioreactor[™] and in CellTank[™] in small scale → ADVANTAGEOUS
- The use of a single-use bioreactor equipped with robust cell separation device offers a solution alleviating technical and sterility challenges occurring in perfusion processes

Conclusions – Hollow fiber operation

- Present study give mathematical tools to select / design hollow fibers
 - lumen size and / or number of fibers → important for high cell density
 - recommendation of larger lumen or larger number of fibers
 - recommended to use larger number of fibers than 50 fibers (present study) using ATF for cell density ≥ 100 - 120 x 10⁶ cells/mL in disposable bioreactor
 - filter area → impact on fouling

Perspectives - Applications

High or very high cell densities of CHO cells, i.e. 50 to 130 x 10⁶ cells/mL, are applicable for

	Wave Bioreactor TM	CellTank [™]
	& TFF or ATF	(1)
Seed bioreactor	X	
Production bioreactor	X	X
– instable protein		
 non mAb (where fed-batch platform not straight applicable) 		
 small company lacking fed-batch platform 		
Rapid, non optimized production of protein (e.g. explorative research)	X	X
 compensation of low titer by very high cell density 		
Cell expansion for cell banking	X	
 – cryopreservation from culture at 100 x 10⁶ cells/mL 		
 good cell resuscitation and normal mAb production 		
 allows significant time cuts in cell banking and cell expansion 		

(1) Cell detachment is in development

Acknowledgements

GE Healthcare

Co-authors
Marie-Francoise
Clincke
Carin Mölleryd
Puneeth Samani
Ye Zhang

Co-authorsEva Lindskog

Kieron Walsh Eric Fäldt **Co-authors**

Per Stobbe

Co-authors

Christian Orrego

Thanks to

Atefeh Shokri Jan Kinnander Alexis Braun Thanks to

Christian Kaisermayer Craig Robinson VINNOVA

Swedish Governmental Agency for Innovation Systems